

Algorithmic Aspects of a Commercial-Grade Distribution System Load

Flow Engine

Francis Therrien
1
, Marc Belletête

1
, Jean-Sébastien Lacroix

1
, and Matthew J. Reno

2

1
CYME International T&D, St-Bruno, QC, J3V 3P8, Canada

2
Sandia National Laboratories, Albuquerque, NM, 87185, USA

Abstract — The increasing penetration of PV requires more

and more load flow calculations to assess the corresponding
impact on planning and operation of distribution systems, e.g.,
during high-resolution quasi-static time-series calculations. There
is therefore a strong incentive to optimize the speed of
distribution load flow engines as much as possible without
compromising on solution accuracy. This paper details the
structure of a commercial-grade topology-independent Newton-
Raphson distribution load flow engine, the reasoning behind some
of its design choices, and recent improvements made to three
rarely discussed aspects: initialization, calculation and
discretization of tap changer positions, and solution of linear
equations. Computer studies demonstrate the reduction in
computational time on various distribution systems, allowing for
faster interconnection studies with high PV penetration.

I. INTRODUCTION

The large amount of distributed energy resources (DERs)

and especially PV now found at the low- and medium-voltage

levels require rethinking the planning and operation of

distribution grids. Distribution system analysis tools are

becoming more important than ever, as they can assess the

various impacts of DERs on operating constraints, protection

schemes, losses, and so on [1]. While it is now recognized that

precise electromagnetic transient (EMT) studies are sometimes

needed at the distribution level, load flow calculations remain

ubiquitous, whether in “standalone” mode or within quasi-

static time-series (QSTS) studies [2]. Improving the speed of

load flow engines will therefore facilitate the execution of

more comprehensive studies with PV, such as year-long high-

resolution QSTS studies [2].

Traditional distribution system load flow engines often use

the ladder iterative method (often known as backward-forward

sweep), which is tailored for radial and passive systems.

While the ladder iterative method can be adapted to handle

meshes [3] and voltage-controlled nodes [4], its efficiency

decreases quickly as the number of loops and DERs in voltage

control mode increases. In fact, ladder iterative methods will

rarely converge in urban meshed networks .

Modern commercial-grade load flow engines often use

matrix-based methods. Some of these engines are based on a

full Newton-Raphson approach [5]–[8], while others use a

fixed point scheme [8]–[10]. Full Newton-Raphson

approaches can naturally handle continuous controls by

integrating them in the constraint vector, and typically

converge in a few iterations; however, they require matrix re-

factorizations, which are typically considered as computational

bottlenecks. Fixed point schemes keep the same matrix factors,

and therefore are considered faster; however, they may have

more difficulty converging. The use of a smaller external

sensitivity matrix can improve convergence in fixed point

techniques [10], but its calculation and solution may require

non-negligible computational effort when the number of

control devices is large.

The CYME power engineering software has two load flow

engines for unbalanced distribution systems: Voltage Drop

Unbalanced (VDU, based on the ladder iterative approach),

and the more recent Newton-Raphson Unbalanced (NRU,

based on a full Newton-Raphson scheme). This paper first

gives an overview of NRU, which is built on the work set forth

in [8]. We discuss in detail three aspects of NRU that are often

overlooked in the literature but that can have a significant

impact on computational speed: the initialization method, the

calculation and discretization of load tap changer (LTC)

positions, and the solution of the resulting system of linear

equations. Specifically, we present the advantages and

disadvantages of initializing NRU with a fixed point (FP) or

flat start (FS) approach, and briefly describe how to generate

the FS profile considering NRU’s modified nodal formulation.

The benefits of integrating the control variables within NRU’s

set of equations are also discussed. Two LTC position

normalization approaches are then presented. Finally, we

challenge the often-held belief that constant-matrix engines are

necessarily faster than full Newton-Raphson ones unless the

former requires many more iterations. A brief discussion on

two linear solvers, PARDISO [11] and KLU [12], is also

included. Computer studies on various distribution systems are

then presented to support the claims and hypotheses made

throughout this paper.

II. LOAD FLOW FORMULATION AND ALGORITHMIC ASPECTS

A. Fundamentals

Using the principle of modified nodal analysis (MNA,

sometimes referred to as modified augmented nodal analysis

[8]), the main load flow constraints can be described by

 ()cdnnn xivfi ,,= (1)

 ()cdndd xivfv ,,= (2)

 ()cdncc xivfy ,,= (3)

where nf , df , and cf are – potentially nonlinear – functions

enforcing Kirchhoff’s current law at every node, Kirchhoff’s

voltage law for ideal components (voltage sources, switches,

and branch-dependent devices such as transformers and

regulators), and additional network/component constraints,

respectively; nv , di , and cx are state vectors comprising the

nodal voltages, the currents of the ideal components, and the

additional state variables (e.g., the equivalent admittance of

DERs), respectively; and ni , dv , and cy are nodal injection

currents, voltages of ideal voltage sources, and the desired

values of the additional network constraints. Complex values

are represented using rectangular components. A multiphase

framework is considered to model unbalanced conditions and

topologies typical of North American distribution systems.

Since some of the constraints are nonlinear, (1)–(3) must be

solved iteratively, herein using a full Newton-Raphson

approach. Writing the Taylor series of (1)–(3) and truncating it

therefore yields the main NRU equation

−

=

∆

∆

∆

k
c

k
d

k
n

k
c

k
d

k
n

k
c

k
d

k
n

k
d

k
l

k
l

k
c

k
d

k
r

k
c

k
c

k
n

f

f

f

y

v

i

x

i

v

CCC

CSD

CDY

21

2

1
''

 (4)

or, written in compact form,

 kkkk fbxJ −=∆ . (5)

In the above, the superscript k indicates the iteration count;
k

n
''Y , k

cD , k
rD , k

dS , k
c1C , k

c2C , k
l1C , k

l2C , and k
dC are

submatrices of the system Jacobian kJ ; and the ∆ operator

indicates the difference between a given vector at the present

and past iterations (e.g., 1−
−=∆

k
n

k
n

k
n vvv). Additional

information regarding the formulation of the Jacobian matrix

and the right-hand side vectors kb and kf can be found in

[8], [13]. In particular, k
n
''Y is a modified version of the

standard admittance matrix, which accounts for state-variable-

dependent equivalent current injections (see Section II-B).

Following the Newton-Raphson approach, (4) or (5) is

solved iteratively until the largest normalized voltage

mismatch has fallen below a user-specified tolerance, while

ensuring that all dependent and independent variables are

within their physical boundaries (e.g., minimum and maximum

tap positions, reactive power capabilities, …).

B. Current Injections vs. Additional Network Constraints

Due to the flexibility of MNA, loads can be included either

as equivalent current injections in k
nf [5], or through

additional network constraints in k
cf [7], [8]. On one hand, the

former approach does not increase the system dimension, but

its partial derivatives added in k
n
''Y are fairly involved when

voltage-sensitive load models are used [5]. On the other hand,

the latter approach increases the system size (the load currents

are added to k
cx), but only a few straightforward elements

must be added to k
l1C and k

dC (e.g., 8 for a single-phase wye-

grounded load) [7], [8]. Moreover, k
c1C acts as an adjacency

matrix for loads, and therefore its only non-zero values will be

1s and potentially –1s.

Tests on various networks have shown that no approach is

unequivocally faster, owing in part to the high efficiency of

modern linear solvers. However, it was noted that the

equivalent current injection approach converged more

robustly, likely due to its more linear formulation. The

robustness of the equivalent current injection approach was

further improved by representing loads using a fixed

admittance in k
n
''Y and a small current in k

ni compensating for

the difference between the desired power and the power

consumed by the fixed admittance. For a constant impedance

load, the load equation becomes fully linear as the current

injection is always equal to 0.

Other types of power injections or network constraints, such

as DERs in voltage control mode, cannot be formulated

linearly or quasi-linearly. In this case, their control equations

are added to k
cf along with the corresponding states in k

cx [7],

[8].

C. Initialization

The Newton-Raphson approach is not self-starting: its initial

state vector 0x must be defined to solve (4) or (5). The FS

approach remains the initialization method of choice in

traditional transmission-level load flow engines, as the state

vector is only comprised of nodal voltages in polar

coordinates, and the phase shift of transformers is typically

ignored. Initialization is more complicated in NRU, as its

formulation includes state variables that are not nodal voltages

(see (4)), and transformer phase shifts are considered.

Moreover, the selected transformer modeling approach [14]

involves internal nodes, whose equivalent FS voltage is not

always trivial to define.

Due to the above reasons, NRU was originally initialized

using a single-iteration FP solution [7], [8]. Therein, all power

injection devices are represented using equivalent admittances.

The initial reactive power must be guessed for generators in

voltage control mode, which can be problematic in some

transmission systems. All load tap changers (LTCs, see

Section II-D) are fixed. Vector 0
cf is filled with 0s, 0

1cC and
0

2cC are empty matrices, and 0
dC is an identity matrix. This

creates a linear equivalent to (4), allowing the computation of

an initial guess of the state vector. Moreover, if the

linearization is accurate, 0x will be closer to the final solution

than a FS, possibly reducing the number of iterations. To

increase speed, the FP matrix is padded with “hard” 0s

wherever the Jacobian kJ might have non-zeros.

Consequently, kJ can be built upon the structurally identical

FP matrix, thereby significantly reducing CPU time since

matrices are stored in a compressed sparse format [15].

The main caveat of this approach is that it requires two

successive symbolic factorizations (for the FP solution and the

first Newton-Raphson iteration), which are costly operations.

More detail on this subject is given in Section II-E. To reduce

the number of symbolic factorizations and hopefully the CPU

time, an augmented FS approach is proposed. It makes use of a

network-model iterator, which computes the complex nominal

voltage at each node. For transformers, the internal nodal

voltages are initialized based on the corresponding external

nodal voltages and winding configuration. Vector 0
di can be

set to 0, since the corresponding equations are almost always

linear; whereas the values of 0
cx are set using the desired

power injection and the corresponding FS voltage.

D. LTC Discretization

There are two main methods to calculate LTC positions in

load flows: between iterations (externally, sometimes referred

to as the error-feedback approach), or by adding tap positions

as state variables (internally) [16]. The former approach

usually fits well into constant-matrix solutions [17], [18], but

requires the external calculation of a sensitivity factor

(empirically or through a more sound analysis [10]). Hunting

between different LTCs may also occur [16]. In the latter

approach, the LTC voltage set point is added to the constraint

vector (e.g., in k
cf in NRU). When using a Newton-Raphson

approach, the solution usually converges to the desired set

point in a few iterations. The main challenge is that the LTC

positions are treated as continuous variables, whereas only

discrete positions are physically feasible.

Since NRU does not have a constant matrix, and for the sake

of simplicity, LTC positions are included in k
cx along with the

corresponding voltage set-point constraint in k
cf . Another

benefit of this approach is that it meshes naturally with

CYME’s “infinite taps” mode, where LTC positions are

considered as continuous variables. This mode allows planners

to overcome the well-known problem of the multiplicity of

load flow solutions due to LTC bandwidths, which cannot

guarantee a worst-case solution. By using the lower bandwidth

value as the voltage set point along with continuous LTC

positions, planners can obtain under-voltages that are lower or

equal to the worst physically possible under-voltage, and thus

plan their network safely and reliably. This approach can be

easily tweaked to study over-voltages arising due to high PV

penetration and reverse power flow.

Since many distribution engineers require feasible (discrete)

LTC positions, a normalization scheme is also needed. A “step

discretization” approach was first developed in NRU. Based

on the fact that downstream voltage regulators/transformers

have little impact on the upstream voltage, after initial

convergence, LTCs were discretized one by one following a

downstream path. The main disadvantages of this approach are

twofold. First, it is numerically costly for networks with many

LTCs, since two extra iterations are usually needed per LTC.

Second, for meshed networks, the discretization order is not

always obvious. To overcome these problems, this paper

presents a “joint discretization” approach. After the first

convergence, all LTCs are normalized at once. Due to the

concurrent discretization, the controlled voltage of some LTCs

may end up outside of the specified bandwidth. A detection-

correction step has been devised. It checks if all constraints are

respected. When it is not the case, the corresponding LTC

positions are changed by ±1. This is repeated until all

constraints are respected. A break condition is added if

hunting is detected, but this is unlikely on real customer

networks. Finally, the transformer LTC position (primary or

secondary) and the regulator operating mode (e.g., bi-

directional, co-generation [19], …) must be considered to

choose whether the LTC positions must be incremented or

decremented to move towards the bandwidth.

E. Solution of Linear Systems

Roughly speaking, efficient numerical solution of (4) or (5)

using sparse methods includes permuting and pre-ordering the

unsymmetric indefinite Jacobian matrix to reduce fill-ins

(symbolic factorization), calculating the L and U factors

(numerical factorization), and solving using backward-forward

substitution. When considering matrix-based load flows, it has

become almost axiomatic to say that the solution of the linear

equations is the “main computational bottleneck [11]”.

Consequently, since factorization is costlier than backward-

forward substitution, it is pretty much accepted that methods

with constant matrices (therefore requiring only one

factorization) will be more efficient than load flows with

changing matrices, unless they require significantly more

iterations. For instance, in the 1970s, the Fast Decoupled

formulation was shown to be around 5 times faster per

iteration than the full Newton-Raphson formulation [16].

However, in view of today’s highly efficient linear solvers

such as KLU [12] and PARDISO [11], and based on our

practical experience, we make the two following claims: 1) in

complex commercial-grade packages such as CYME, the

percentage of time of a full Newton-Raphson load flow spent

on factorization is relatively small (this will be quantified in

Section III-D); and 2) numerical factorization is

computationally cheap. Since the same symbolic factorization

can be reused from iteration to iteration when the matrix non-

zero pattern remains constant, based on the 2
nd

 claim, a full

Newton-Raphson approach can nowadays be competitive with

constant-matrix methods, and sometimes even faster if it

requires fewer iterations. This is especially true when care is

taken to avoid symbolic factorizations as much as possible, for

instance by discretizing all taps jointly as explained in Section

II-D. In that approach, the corrective steps do not require

additional symbolic factorizations since only the numerical

values change.

PARDISO [11], which is included in Intel MKL, was

initially used as NRU’s solver. It is a general-purpose package

that calls different solvers depending on the matrix properties

(e.g., real or complex numbers, symmetric or unsymmetric,

positive (semi-)definite or indefinite, …). This is an interesting

feature for a wide-ranging distribution system analysis

program such as CYME, as the matrices generated by different

modules often have different properties. KLU [12] was

recently tested as it is designed for circuit matrices, which,

according to [12], are extremely sparse. This is especially true

of the Jacobian of radial systems, but less so for urban meshed

networks. The performance of PARDISO and KLU for

different test systems are presented in Section III-D.

III. CASE STUDIES

The numerical performance of NRU for each pair of

proposed initialization methods, discretization techniques, and

solvers are tested on 6 different networks [20]–[21]. The

salient features of these test systems are presented in Table I.

In particular, the IEEE 342 and Util1 test systems are urban

meshed networks, the latter being extremely large for

distribution systems. In addition to having several inline

voltage regulators, the Util2 and Util3 test systems also have

high PV penetration. The number of nodes reported in Table I

differ from those of the official IEEE test feeders; this is due

to a different (and inconsequential) way of counting nodes.

Moreover, to provide additional insight, the detailed CPU

timings for one of these systems is provided, and a comparison

between the numerical efficiency of NRU and VDU serves as

a closing statement.

All tests are executed on a special version of CYME 7.2

used in the course of the Department of Energy-sponsored

“Rapid QSTS Project”. This version runs on a dedicated

benchmark machine (3.4 GHz i7-2600 CPU with 8 GB of

RAM). A tolerance of 0.01% on the voltage mismatch is used

as the stopping criterion.

A. Initialization

NRU’s numerical efficiency using the FP and FS

initialization methods is presented in Table II for the subject

test systems (all LTCs are operating in “infinite taps” mode

and PARDISO is used). The CPU time is presented in

normalized form with respect to the FP approach. For two

networks, an additional iteration is required with the FS

approach; whereas for the other four, the iteration count is

identical with both initialization procedures. This is explained

by the fact that the FP approach typically yields a state vector

that is closer to the final solution. This can be observed in Fig.

1, where the voltage mismatch of four of the test systems is

plotted as a function of the iteration. Fig. 1 also demonstrates

that both approaches converge almost quadratically. Only the

IEEE 342 system converges slower near the end, due to its

ungrounded nature and the resulting ill-conditioned matrix.

Whether an additional iteration is required or not, the solution

time remains smaller with the FS method, ranging from 83% to

92.7% of the CPU time of the FP approach.

TABLE I

MAIN PROPERTIES OF THE TEST SYSTEMS.

Network Nb. Nodes Nb. Loops Nb. LTCs

CKT5 [9] 3003 0 0

IEEE 342 [20] 390 71 0

IEEE 8500 [21] 4875 0 4

Util1 28425 3180 14

Util2 2370 1 10

Util3 4066 0 14

TABLE II

NUMBER OF ITERATIONS AND NORMALIZED CPU TIME FOR A LOAD FLOW

SOLUTION USING FIXED POINT AND FLAT START INITIALIZATION.

 Fixed Point Init. Flat Start Init.

Network Nb. Iter. CPU Time Nb. Iter. CPU Time

CKT5 2 100% 3 92.7%

IEEE 342 2 100% 2 83.0%

IEEE 8500 3 100% 4 90.6%

Util1 5 100% 5 90.6%

Util2 3 100% 3 86.8%

Util3 3 100% 3 88.9%

Fig. 1. Convergence pattern of four of the test systems using the fixed point

(FP – blue square markers) and flat start (FS – red diamonds markers)

initialization approaches.

To verify the generalization of these results, the NRU load

flow is executed on all the distribution systems of an entire

region of a large utility (657 feeders for a total of 73

independent networks). The majority of these networks are fed

by Yg-Delta transformers with a grounding transformer on the

secondary side, and the peak load scenario is considered. The

combination of these two conditions often causes problems to

distribution load flow engines (in fact, 2 of the networks do

not converge after 200 iterations when using CYME’s robust

VDU engine with a relaxed tolerance of 0.1%). With NRU, all

networks converge independently of the initialization

approach. The FS approach requires an extra iteration for 50

networks; whereas the same number of iterations is needed for

the other 23.

TABLE III

NUMBER OF ITERATIONS AND NORMALIZED CPU TIME FOR A LOAD FLOW

SOLUTION USING STEP AND JOINT LTC POSITION DISCRETIZATION.

 Step Discret. Joint Discret.

Network Nb. Iter. CPU Time Nb. Iter. CPU Time

IEEE 8500 12 100% 9 87.2%

Util1 28 100% 7 31.5%

Util2 23 100% 5 43.2%

Util3 30 100% 7 42.4%

TABLE IV

NUMBER OF ITERATIONS AND NORMALIZED CPU TIME FOR A POWER

FLOW SOLUTION USING THE PARDISO AND KLU SOLVERS.

 PARDISO KLU

Network Nb. Iter. CPU Time Nb. Iter. CPU Time

CKT5 3 100% 3 89.2%

IEEE 342 2 100% 2 92.8%

IEEE 8500 9 100% 9 74.2%

Util1 7 100% 7 225.4%

Util2 5 100% 5 75.8%

Util3 7 100% 7 73.4%

B. Discretization

The number of iterations and normalized CPU time for the

test systems using the step and joint LTC discretization

approaches are summarized in Table III (the FS method is

used along with PARDISO). The results for CKT5 and IEEE

342 are not presented as they do not have LTCs. As expected,

the iteration count and CPU times are reduced with the joint

discretization scheme; this reduction is drastic for networks

with several LTCs (e.g., 7 iterations instead of 28 for Util1,

requiring only 31.5% of the original CPU time). As each

discretization usually results in 2 (sometimes 3) additional

iterations, it can be seen by comparing Tables II and III that

the first joint discretization sometimes resulted in controlled

voltages outside of the specified bandwidth, and that

corrective tap changes were needed to find an adequate

solution.

C. Solvers

The numerical performance of NRU using the PARDISO

and KLU linear solvers are presented in Table IV for the 6 test

systems (the FS and joint discretization techniques are used).

As it is optimized for extremely sparse circuit matrices, KLU

outperforms PARDISO on 5 of the 6 systems; however, for the

very large urban meshed network, PARDISO is more than

twofold faster than KLU. It is therefore suggested to use KLU

for radial and weakly meshed systems, and PARDISO for

highly meshed networks. A criterion based on the loop-to-node

ratio can be added to the code to automatically select the

preferred linear solver for any given system.

TABLE V

DETAILED CPU TIMINGS OF AN NRU LOAD FLOW SOLUTION.

Total Load Flow 58.61 ms

 Create Segment 19.90 ms

 Data Exchange (CYME → NRU) 1.57 ms

 Initialization (build Jacobian) 14.79 ms

 Iteration #1 13.87 ms

 Update Jacobian 0.494 ms

 Create Vector (
kk fb −) 1.162 ms

 Symbolic Factorization 9.081 ms

 Numerical Factorization 2.879 ms

 Solve 0.164 ms

 Convergence Check 0.080 ms

 Iteration #2 4.93 ms

 Update Jacobian 0.527 ms

 Create Vector (
kk fb −) 1.182 ms

 Numerical Factorization 2.990 ms

 Solve 0.169 ms

 Convergence Check 0.056 ms

 Get Results (NRU → CYME) 2.821 ms

D. Detailed Timings

To better assess the numerical performance of NRU, several

timers were added to the major code sections. The resulting

CPU timings for the IEEE 342 test system with PARDISO are

presented in Table V. The “Create Segment” part of the code

consists of reading and treating the network file: it accounts

for around a third of the CPU time. Creation of the matrix is

also non-negligible, as it requires approximately 1/4
th

 of the

total CPU time, which is almost the same as for symbolic and

numerical factorizations combined. This contradicts the well-

known idea that matrix factorization is the main computational

bottleneck in load flow calculations. Numerical factorization is

also about 3 times faster than symbolic factorization. Due to

this, the 2
nd

 iteration accounts for less than 10% of the CPU

time. While these exact ratios depend on the test system and

the solver, they clearly demonstrate that a full Newton-

Raphson approach is not much slower than constant-matrix

solutions.

E. Comparison Between NRU and VDU

Finally, the CPU times necessary to solve the load flows of

the six test systems with CYME’s NRU and VDU engines are

presented in Table VI. NRU is initialized using FS, the LTCs

are discretized jointly, and either KLU or PARDISO is used,

based on the criterion explained in Section III–C. It is

observed that VDU does not converge on 3 of the 6 systems.

The IEEE 342 and Util1 test systems diverge due to their

highly meshed structure; whereas hunting between the 14

LTCs occurs when trying to solve the Util3 network. It is

emphasized that Table VI is not meant as the definitive

comparison between matrix-based and ladder iterative

methods, but simply as a comparison between two optimized

TABLE VI

NUMBER OF ITERATIONS AND NORMALIZED CPU TIME USING THE NRU

AND VDU LOAD FLOW SOLVERS (THE DASH (–) INDICATES

DIVERGENCE).

 NRU VDU

Network Nb. Iter. CPU Time Nb. Iter. CPU Time

CKT5 3 0.174 s 4 0.142 s

IEEE 342 3 0.122 s – –

IEEE 8500 9 0.531 s 19 0.733 s

Util1 5 5.400 s – –

Util2 5 0.211 s 13 0.205 s

Util3 8 0.298 s – –

commercial-grade distribution load flow solvers. As

previously demonstrated in [6] in different environments, the

cost per iteration is smaller for VDU than NRU; whereas the

former typically requires fewer iterations. In particular, NRU

converges in much fewer iterations than VDU on highly

loaded systems with several controls, such as the IEEE 8500

system. Overall, the computational cost of NRU is absolutely

competitive with VDU; in fact, NRU is even faster than VDU

on some systems.

IV. CONCLUSION

This paper presents the general structure of a commercial-

grade load flow engine suitable for distribution systems of all

topologies, called Newton-Raphson Unbalanced (NRU). Three

often overlooked aspects of distribution load flow calculations

are discussed in detail: initialization, calculation and

discretization of tap changer positions, and solution of the

resulting linear equations. Computer studies on multiple

distribution systems support the design choices made

regarding the three aforementioned aspects. They also

demonstrate that the versatile NRU engine is very competitive

in terms of CPU time with a topology-limited ladder iterative

engine. As a consequence of its high numerical efficiency,

NRU is well suited to meet the increasing demand of

distribution system load flow solutions arising from higher

levels of PV penetration.

REFERENCES

[1] R. F. Arritt and R. C. Dugan, “Distribution system analysis and

the future smart grid,” IEEE Trans. Ind. Appl., vol. 47, no. 6,

pp. 2343–2350, Nov./Dec. 2011.

[2] M. J Reno, J. Deboever, and B. Mather, “Motivation and

requirements for quasi-static time series (QSTS) for distribution

system analysis,” to appear in Proc. IEEE Power Energy Soc.

General Meeting, 2017.

[3] D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo,

“A compensation-based power flow method for weakly meshed

distribution and transmission networks,” IEEE Trans. Power

Syst., vol. 3, no. 2, pp. 753-762, May 1988.

[4] C. S. Cheng and D. Shirmohammadi, “A three-phase power

flow method for real-time distribution system analysis,” IEEE

Trans. Power Syst., vol. 10, no. 2, pp. 671-679, May 1995.

[5] P. A. N. Garcia, “Three-phase power flow calculations using the

current injection method,” IEEE Trans. Power Syst., vol. 15, no.

2, pp. 508-514, May 2000.

[6] L. R. de Araujo et al., "Comparisons between the three-phase

current injection method and the forward/backward sweep

method," Elect. Power Energy Syst., vol. 32, pp. 825-833, 2010.

[7] W. Xu, J. R. Martí, and H. W. Dommel, “A multiphase

harmonic load flow solution technique,” IEEE Trans. Power

Syst., vol. 6, no. 1, pp. 174-182, Feb. 1991.

[8] I. Kocar et al., “Multiphase load-flow solution for large-scale

distribution systems using MANA,” IEEE Trans. Power Del.,

vol. 29, no. 2, pp. 908-915, Apr. 2014.

[9] R. C. Dugan, T. E. McDermott, “An open source platform for

collaborating on smart grid research,” in Proc. IEEE Power

Energy Soc. General Meeting, 2011.

[10] I. Dzafic, R. A. Jabr, E. Halilovic, and B. C. Pal, “A sensitivity

approach to model local voltage controllers in distribution

networks,” IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1419-

1428, May 2014.

[11] O. Schenk and K. Gärtner, “Solving unsymmetric sparse

systems of linear equations with PARDISO,” Future Generation

Comp. Syst.., vol. 20, no. 3, pp. 475-487, 2004.

[12] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU,

a direct sparse solver for circuit simulation problems,” ACM

Trans. Math. Softw, vol. 37, no. 3, Sep. 2010.

[13] I. Kocar, J.-S. Lacroix, and F. Therrien, “General and simplified

computation of fault flow and contribution of distributed

sources in unbalanced distribution networks,” in Proc. IEEE

Power Energy Soc. General Meeting, 2012.

[14] I. Kocar and J.-S. Lacroix, “Implementation of a modified
augmented nodal analysis based transformer model into the
backward forward sweep solver,” IEEE Trans. Power Syst., vol.
27, no. 2, pp. 663-670, May 2012.

[15] T. A. Davis, Direct Methods for Sparse Linear Systems,
Philadelphia, PA: SIAM, 2006.

[16] B. Stott, “Review of load-flow calculations,” Proc. IEEE, vol.

62, no. 7, pp. 916-929, Jul. 1974.

[17] B. Stott and O. Alsaç, “Fast decoupled load flow,” IEEE Trans.

Power App. Syst., vol. PAS-93, no. 3, pp. 859-869, 1974.

[18] S.-K. Chang and V. Brandwajn, “Adjusted solutions in fact

decoupled load flow,” IEEE Trans. Power Syst., vol. 3, no. 2,

pp. 726-733, May 1988.

[19] Cooper Power Systems, S225-10-10: Voltage Regulators, Oct.

2001.

[20] K. Schneider, P. Phanivong, and J.-S. Lacroix, “IEEE 342-node

low voltage networked test system,” in Proc. IEEE Power

Energy Soc. General Meeting, 2014.

[21] R. F. Arritt and R. C. Dugan, “The IEEE 8500-node test

feeder,” in Proc. IEEE Power Energy Soc. T&D, 2010.

This research was supported in part by the DOE SunShot Initiative,

under agreement 30691. Sandia National Laboratories is a

multimission laboratory managed and operated by National

Technology and Engineering Solutions of Sandia, LLC., a wholly

owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration

under contract DE-NA0003525.

